If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15x-34=0
a = 4; b = 15; c = -34;
Δ = b2-4ac
Δ = 152-4·4·(-34)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{769}}{2*4}=\frac{-15-\sqrt{769}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{769}}{2*4}=\frac{-15+\sqrt{769}}{8} $
| -3x+28=-29 | | •5x•6x=•75x-11 | | (2x+5)/7=9 | | 4^8+20x=-6(20x-8) | | 4x+2=218 | | 10x-50+29x=6 | | 35x+50=260 | | 5=1/5x−3 | | 16+c=18.50 | | 5=15x−3 | | 6x+10=-1190 | | 12+1/3x+2/3x=x | | 7-2x=4-8x | | 6x+24=-30 | | 2+4x=2x-6 | | 16+c=19.50 | | 3/4*500=1/2x | | 9+4x=105 | | y”-25y=0 | | 5x-16=-326 | | (x)^2-121=0 | | 3(2-m)=9m-12 | | -3(w=4)=18 | | 9x+12=333 | | 7x+95=-66 | | 2(x+1)=3x-2^4 | | 40•2^x+6=200 | | -8x+36=-36 | | 8(b+2)=64 | | -12-5y+21=14y+6+2y | | 15x+7(4-x)=55 | | (5x+3)+32=180 |